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Christina Fraley
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September 1988

Abstract

) This paper addresses the nonlinear least-squares problemmiewrw-ft!)4,wheme"

'f()4s a vectorin R whose eomponents are smooth-nonl4near functions. The problem

K. t h,k arises most often in data fitting applications. Much research has focused on the devel-

opment of specialized algorithms that attempt to exploit the structure of the nonlinear

least-squares objectiv-e numerical methods developed for problems in which

sparsity in the derivatives of f is not taken into account in formulating algorithms.
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1. Introduction

This paper addresses the problem of minimizing the 12 norm of a multivariate func-

tion:

Min 1Af)112,

where f(z) is a vector in Rn whose components are real-valued nonlinear functions with

continuous second partial derivatives. We shall refer to the function 2If(x)I as the

nonlinear least-squares objective function. An alternative formulation of the problem

is that of minimizing a sum of squares:
ran1 In

mi .,X 2,

i=1

where each Oi is a real-valued function having continuous second partial derivatives.

There is considerable interest in the nonlinear least-squares problem, because it

arises in virtually all areas of quantitative research in data-fitting applications. A typical

instance is the choice of parameters # within a nonlinear model V so that the model

agrees with measured quantities di as closely as possible:
" 1

mini Z (,p(P;ri)-di)' ,

where ;i are prescibed values. Much research has focused on the development of spe-

cialized algorithms that attempt to exploit the structure of the nonlinear least-squares

objective. Despite these efforts, methods do not perform equally well on all problems,

and it is generally not possible to characterize those problems on which a particular

method will or will not work well.

In this paper, we survey existing numerical methods for dense nonlinear least-squares

problems. For a study of the performance of widely-distributed software for nonlinear

least-squares, see Fraley [1988bJ. We assume a knowledge of numerical methods for

linear least-squares problems (e. g., Lawson and Hanson [1974], and Golub and Van

Loan [19831). We also assume familiarity with Newton-based linesearch and trust-

region methods for unconstrained minimization (e. g., Fletcher [1980], Gill, Murray, and

Wright [1981], Dennis and Schnabel [19831, and Mori and Sorensen [19841). If Y is the

function to be minimized, recall that both linesearch and trust-region methods involve

iterative minimization of a quadratic local model

Q(p) = V.F(xk)Tp + p
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for .F(zk+p)-F(zk), the change in " at the current iterate Zk. In linesearch methods,

the vector p~s defined by
LS mm Qp

pk _rg min pEat Q(P)

is used as a search direction. A positive step is taken from zk along pLS to the next

iterate, that is,

Xk+1 = Xk + ,kkpL S,

where the steplength ak > 0 is computed by approximate minimization of the function

'k(ck) = F(zk + apes). The vector pLs must be a descent direction for Y at Xk -

in other words, V.F(zk)TpLs < 0 - so that F initially decreases along pLS from Xk.

Normally Hk is required to be positive definite, which guarantees that the quadratic

model has a unique minimum that is a descent direction. In trust-region methods,

Xk+1 = Xk + pT,

where
TR

Pk = arg min PE. Q(p) subject to lpli <- bk.

The rationale for restricting the size of p in the subproblem is that Q(p) is a good

approximation to Y only at points close to zk.

1.1 Definitions and Notation

We shall use the following definitions and notational conventions:

* Generally subscripts on a function mean that the function is evaluated at the

corresponding subscripted variable (for example, fk = f(Xk)). An exception is

made for the residual functions 4'i, where the subscript is the component index for

the vector f.

" f - The vector of nonlinear functions whose 12 norm is to be minimized.

The nonlinear least-squares problem is

min 1 f(x)T f(z),
WEat 2

where the factor I is introduced in order to avoid a factor of two in the derivatives.2
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* - The ith residual function, also the ith component of the vector f.

An alternative formulation of the nonlinear least-squares problem is

1 m
min O -,i(x) 2 ,

where each -,(x) is a smooth function mapping Rn to R.

J - The m x n Jacobian matrix of f.

... x

g - The gradient of the nonlinear least-squares objective.

" B - The part of the Hessian matrix of the nonlinear least-squares objective that
involves second derivatives of the residual functions. We have

V2  
= J(x)T J(z) + B(x),

where

B(x) E 0;(X)V2;(X).

" RI(A) - The range of A.

IfAisanmxnmatrix, then1(A) {bE ?'lAx=b for some xE R)}isa

subspace of Rna.

*A '(A) - The null space of A.

If A is an m x n matrix, then Af(A) ={z E R I Az = 0 is a subspace of n'a.

Af(A) is the orthogonal complement of R'(AT) in rn.

3
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2. Gauss-Newton Methods

The classical approach to nonlinear least squares, called the Gauss-Newton method,

is a linesearch method in which the search direction at the current iterate minimizes the

quadratic function
9TP + 1 P'rjTjkp.(21
9k 1 (2.1)

The function (2.1) is a local approximation to 12 IIf( + - I~f(z)I in which

each residual component of f is approximated by a linear function, using the relationship

f(zk + p) = f(xk) + J(xk)p+ O(llp112).

As a model for the change in the least-squares objective, (2.1) has the advantage that

it involves only first derivatives of the residuals, and that jTj is always at least positive

semi-definite.

The Gauss-Newton method can be viewed as a modification of Newton's method

in which jTj is used to approximate the Hessian matrix

jTj + -:,OV20, = jTj + B

i=1

of the nonlinear least-squares objective function. The assumption is that the matrix
jTj should be a good approximation to the full Hessian when the residuals are small.

In fact, if f(x*) = 0 and J(x*)TJ(X* ) is positive definite, then the sequence {Xk-+pkN}

is locally quadratically convergent to x*, because
TjX = I V211f(X*)I112~ l~ l)

J(xk)T J(xk)
2 + O(k - X*)

For more convergence results and detailed convergence analysis for the Gauss-Newton

method, see, e. g., Chapter 10 of Dennis and Schnabel [1983], Schaback [1985], and

Haussler [19861, as well as some of the references cited below.

McKeown (1975a, 1975b] studies test problems of the form,

XT HI z

f(x) = fo + G0x +

chosen so that factors affecting the rate of convergence could be controlled. He uses

three such problems, with seven different values of a parameter that varies an asymptotic

linear convergence factor. The algorithms tested include some quasi-Newton methods

4
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for unconstrained optimization, as well as some specialized methods for nonlinear least

squares that have since been superseded. He concludes that, when the asymptotic

convergence factor is small, the Gauss-Newton method is more efficient than the quasi-

Newton methods, but that the opposite is true when the asymptotic convergence factor

is large. Fraley [1987a; 1988b] gives numerical results for some Gauss-Newton meth-

ods using these problems, and observes that the Jacobian is well-conditioned at every

iteration.

A difficulty with the Gauss-Newton method arises when jTj is singular, or, equiv-

alently, when J has linearly dependent columns, because then (2.1) does not have a

unique minimizer. The set of vectors that minimize (2.1) is the same as the set of

solutions to the linear least-squares problem

rin IIJkp + fA(1 2 • (2.2)PER.

One theoretically well-defined alternative that is often approximated computationally is

to require the unique solution of minimum 12 norm:

Mn 11p112 , (2.3)pES

where S is the set of solutions to (2.2). Another option is to replace J in (2.2) by

a maximal linearly independent subset of its columns. In finite-precision arithmetic,

there is often some ambiguity about how to formulate and solve an alternative to (2.2)

when the columns of J are "nearly" linearly dependent, so that, from a computational

standpoint, any particular Gauss-Newton method must be viewed as a class of methods.

The references cited above for linear least squares discuss at length the difficulties

inherent in computing solutions to (2.2) when J is ill-conditioned, and show that the

numerical solution of these problems is dependent on the criteria used to estimate the

rank of J. For a survey of some of the early research on numerical Gauss-Newton

methods, see Dennis [19771. We define the class of Gauss-newton methods to include

all linesearch methods in which the search direction is the result of some well-defined

computational procedure for solving (2.2).

Most often in Gauss-Newton methods the nonlinear least-squares objective is used

as a merit function for the linesearch. If

pKN arg min PEgkp + 2 p kJkP,

5. .



then p" satisfies the equations

JkJ P = -9k, (2.4)

and is therefore a direction of descent for fTf at xk whenever gk $ 0. To guaran-

tee convergence to a local minimum in a linesearch method, the sequence of search

directions must also be bounded away from orthogonality to the gradient of the merit

function, a condition that may not be met by successive Gauss-Newton directions rela-

tive to fTf unless the eigenvalues of jT J are bounded away from zero. Powell [1970a]

gives an example of convergence of a Gauss-Newton method with exact linesearch to a

non-stationary point, in which the search direction becomes orthogonal to a non-zero

gradient.

Deuflhard and Apostolescu [19801 suggest selecting a steplength for the Gauss-

Newton direction based on decreasing the merit function fJt ()I12, rather than

IIf(X)l1 , for a class of nonlinear least-squares problems that includes zero-residual prob-

lems. The function Jt is the pseudo-inverse of Jk (see, e. g., Chapter 6 of Golub and

Van Loan [1983]), and Jtfk is the minmum 12 -norm solution to ttJkp + fkIl2. They

reason that the Gauss-Newton direction is the steepest-descent direction for the func-
t 2 2

tion IIJ.f(x)I , so that the geometry of the level surfaces defined by IIJf(z)I is
more favorable to avoiding small steps in the linesearch. A shortcoming of this approach

(pointed out by the authors) is that there are no global convergence results. The merit

function depends on Xk, so that a different function is being reduced at each step. An-

other difficulty is that, although the authors state that numerical experience supports

selection of a steplength based on IiJtf(x)ll2 for ill-conditioned problems, the transfor-

mation jt is not numerically well-defined under these circumstances. Therefore neither

the Gauss-Newton search direction, nor the merit function, is numerically well-defined

when the columns of J are nearly linearly dependent. Since it is not known how to

improve Gauss-Newton methods for general problem- through the selection of merit

functions for the linesearch, we shall henceforth make the conventional assumption that

the linesearch is performed relative to the nonlinear least squares objective.

There is another reason why it is difficult to say precisely what is meant by a

"Gauss-Newton method" for a particular nonlinear least-squares problem. To see this,

let Q(x) be an I x m orthogonal matrix function on R', that is, Q(z)TQ(x) = I for

all x. Then IIQ(x)I(x)ll2 = IIf(X)l for all z, and consequently the function f - f

6



defines the same nonlinear least-squares problem as f. The Jacobian matrix of f is

J = QJ + (VQ)f, so that a minimizer of JjJp + f112 will ordinarily be different from a

minimizer of IIJp + fI I, unless Q(z) happens to be a constant transformation. However,

if both Q and f have k continuous derivatives, then V'IIQ(x)f(z)I1 = V'illf(x)112 for

i = 1,2,... ,k. Letting W = (VQ)f, so that J = Q W + W, we have

frj = jTj + (JTQTW + WTQj) + WTw,

showing that the Gauss-Newton approximation jTj to the full Hessian matrix is changed

when f is transformed by an orthogonal function that varies with x. Thus, with exact

arithmetic, there are many Gauss-Newton methods corresponding to a given vector

function, although Newton's method remains invariant (see also Nocedal and Overton

[1985], p. 826). In fact, each step of a Gauss-Newton method could be defined by a

different transformation of f. Moreover, the conditioning of i may be very different

from that of J, so that, for example, the columns of J might be strongly independent,

while J is nearly rank deficient. Since the number of rows in Q may be greater than n,

it is possible to imbed the given nonlinear least-squares problem in a larger one.

Although it is known that Gauss-Newton methods do not work well under all cir-

cumstances, it is not possible to say anything more precise about the method when

considering large and varied sets of test problems. Gauss-Newton methods are of practi-

cal interest because there are many instances in which they work very well in comparison

to other methods. In fact, most successful specialized approaches to nonlinear least-

squares problems are based to some extent on Gauss-Newton methods and attempt to

exploit this behavior whenever possible. However, it is not hard to find cases where

Gauss-Newton methods perform poorly, so that they cannot be successfully applied to

general nonlinear least-squares problems without modification.

Fraley [1987a, 1988b] gives numerical results for a large set of test problems using

widely-distributed software for unconstrained optimization and nonlinear least squares.

She also incl',des some Gauss-Newton methods that use LSSOL [Gill et al. (1986a)] to

solve the linear least-squares subproblem (2.2). Her findings confirm that Gauss-Newton

methods are often among the best available techniques for nonlinear least squares -

especially for zero-residual problems - but that there are many cases in which they

fail or are inefficient. Detailed examples are presented in Fraley [1988b] that illustrate

some of the difficulties involved in characterizing those problems on which Gauss-Newton

methods will or will not work well.

7
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Many attempts have been made to define algorithms that depart from the Gauss-

Newton strategy only when necessary. Ramsin and Wedin [1977] use the steepest-

descent direction, rather than the Gauss-Newton direction, whenever the decrease in

the objective is considered unacceptably small. They compare the performance of this

Gauss-Newton-based method with that of a Levenberg-Marquardt method for nonlinear

least squares and a quasi-Newton method for unconstrained optimization, both from the

Harwell Library. The quasi-Newton routine required an initial estimate H0 of the Hessian

matrix, and the choice H0 = J(X0 )TJ(X0 ) was made on the basis of preliminary tests

that showed equal or better performance compared to HO = . The test problems were

constructed so that asymptotic properties could be monitored and are similar to those

of McKeown [1975a, 1975b] mentioned above. In all cases considered, the Jacobian

matrix had full column rank at the solution. The experiments invc'ved variation of a

large number of parameters. Ramsin and Wedin conclude that their Gauss-Newton-

based method and the Levenberg-Marquardt method are identical when the asymptotic

convergence factor is small, but that neither method is consistently better for large

asymptotic convergence factors. Also, they find that in instances when the asymptotic

convergence factor is large, the quasi-Newton method may be more efficient, although

superlinear convergence of the quasi-Newton method was never observed. Ramsin and

Wedin maintain that Gauss-Newton should not be used when (i) the current iterate

Xk is close to the solution z*, and the relative decrease in the size of the gradient is

small, (ii) Xk is not near x*, and the decrease in the sum of squares relative to the
size of the gradient is small, or (iii) Jk is nearly rank-deficient. Conditions (i) and (ii)

are indicators of inefficiency for any minimization algorithm. Although hybrid methods

do exist that are based on ascertaining whether or not the current iterate is close to a

solution (see below), a drawback of these approaches is that they rely on approximations

to asymptotic relationships and are not sufficient to guarantee proximity to a minimum.

Whether the parameters defining the critical conditions can be chosen in such a way

as to be suitable over a wide range of problems has yet to be demonstrated. As for

condition (iii), rapidly convergent Gauss-Newton methods may exist even if nearly rank-

deficient Jacobians are encountered, but it is appears difficult to formulate a single rule

for estimating the rank of the Jacobian that is satisfactory for all such problems (see

Fraley [1988b]).

Bard [1970] uses the eigenvalue decomposition of JTj to solve the normal equations

(2.4). In order to ensure a positive-definite system, he modifies the eigenvalues if their

8



magnitude falls below a certain threshold. In addition, his implementations include

bounds on the variables that are enforced by adding a penalty term to the objective

function. He compares these Gauss-Newton-based methods with a Levenberg-Marquardt

method (Section 3) and some quasi-Newton methods for unconstrained optimization on

a set of ten test problems from nonlinear parameter estimation. He finds that the

Gauss-Newton-based methods are more efficient in terms of function and derivative

evaluations than the quasi-Newton methods, but that there is no significant difference

in the relative performance of the Gauss-Newton-based methods and the Levenberg-

Marquardt method.

Betts [1976) proposes an algorithm that combines a Gauss-Newton method with

a method in which the Gauss-Newton approximate Hessian jTj is augmented by a

quasi-Newton approximation to the second-order term B = F1 I0V 246, in the non-

r linear least-squares Hessian (see Section 5). The algorithm starts with a Gauss-Newton

method, and then switches to the augmented Hessian when it is believed that the iterates

are near the solution. The criterion for the switch is

U(p 0 2 < C (1 + Jf z 2), (2.5)

for some t < 1. Results are presented for the hybrid methods, as well as for the

underlying Gauss-Newton method and special quasi-Newton method (see Section 5),

on a set of eleven test problems. Betts concludes that the hybrid method is superior,

especially on problems with nonzero residuals, although the results he lists in his tables

do not all have the same value of c in (2.5). Another issue that is not clarified is

the treatment of near-singularity or indefiniteness in the quadratic model in any of the

methods tested. Also the test (2.5) is not sufficient to imply that the Gauss-Newton

iterates are in the vicinity of a solution, and could instead indicate inefficiency in the

Gauss-Newton method at some arbitrary point.

Wedin and Lindstrom [19881 have developed an algorithm for nonlinear least-squares

that combines a Gauss-Newton method with a finite-difference Newton method. A

Gauss-Newton search direction is computed at every iteration usinLr a QR factorization

with column pivoting and a standard rank-estimation scheme. The ith column of R is

replaced by a column of zeros in the factorization if the i diagonal r 1 satisfies

I r. _ ov"ilr.Ii,
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where o is a fixed tolerance. However, the method may ultimately decide to take a step

along a Gauss-Newton direction for which the effective rank is less than the original

rank estimate. The heuristics for determining the effective rank are complicated, and

search directions for several different values of the effective rank may be tried before

a step is actually taken. A finite-difference Newton step may be used when the steps

along Gauss-Newton directions become small, and the iterates are judged to be close to

a solution. In the algorithm, the decision about whether Xk is near the solution is based

on the relation IIk112 > -Y/
3 for some -f > 1, where k is the norm of the projection of

fk onto the range of Jk. Note that fk depends on the estimated rank of the Jacobian.

The ratio #/, 3k;.-1 is used as an estimate of an asymptotic linear convergence factor.

They give numerical results for a set of thirty large-residual test problems constructed

by AI-Baali and Fletcher [19851, and compare their results with those given by AI-Baali

and Fletcher for two hybrid Gauss-Newton/BFGS methods and a version of NL2SOL

(see Dennis, Gay, and Welsch [1981 a, b]). Wedin and Lindstrom find that their method

gives better overall results than the other methods, although their method does fail in

three cases due to a finite-difference Hessian that is not positive definite.

In addition to those described above, many of the methods discussed in subsequent

sections also use Gauss-Newton search directions under certain circumstances.

3. Levenberg-Marquardt Methods

In Levenberg-Marquardt methods, the Gauss-Newton quadratic model (2.1) is min-

imized subject to a trust-region constraint. The step p between successive iterates

solves

min gTp+ pT JT jp(31)
PER* 2

subject to IlDpI 2 < 6,

for some b > 0 and some diagonal scaling matrix D with positive diagonal entries.

Equivalently, p minimizes the quadratic model
1

g p + 1 pT(jPrj + ADTD)p, (3.2)

for some A> 0. Since the matrix jTj + ADDTD is positive semidefinite, minimizers p ,

of (3.2) satisfy the equations

(jTj + ADTD)p = _g = _jTf, (3.3)

10



which are the normal equations for the linear least-squares problem

nu H1 (V'XD )p ( (3.4)

Hence a regularization method (e. g., Chapter 25 of Lawson and Hanson [1974], Eldin

[1977, 1984], Varah [19791, and Gander 11981]) is being used to solve the linear least-

squares problem (2.2) for the step to the next iterate.

The paper by Levenberg [19441 is the earliest known reference to methods of this

type. Based on the observation that the unit Gauss-Newton step PoN often fails to

reduce the sum of squares when IlPoNIl is not especially small, he suggests limiting the

size of the search direction by solving a "damped" least-squares subproblem,

min w(gTp + I jTjTjp) + IIDpI1, (3.5)
pE R

in which a weighted sum of squares of linearized residuals and components of the search

direction is minimized. He proves the existence of a value of w for which

Aif(z + P,.)112 < IIf()011,

where pw, solves (3.5), thus ensuring a reduction in the sum of squares for a suitable

value of w. A major drawback is that no automatic procedure is given for obtaining W.

Levenberg suggests computing the value of IIf(z + P )I2 for several trial values of W,

locating an approximate minimum graphically, and then repeating this procedure with

the improved estimates until a satisfactory value of w is obtained, but precise criteria

for accepting a trial value are not given. Two alternatives are proposed for the diagonal

scaling matrix D in (3.5): D = I, because it minimizes the directional derivative gTpW

for w = 0, and the square root of the diagonal of jTj, based on empirical observations.

The claim is that the new method solves a wider class of problems than methods that

existed at that time, and that it does so with relative efficiency.

Somewhat later, a similar method was (apparently independently) proposed. Mor-

rison (19601 considers a quadratic model

T p +pHp, (3.6)

in which either H = jTj or H = V 2 (fJT) (in the latter case, it is implicitly as-

sumed that V 2 (fTf) is positive semidefinite). He advocates minimizing (3.6) over a

11



neighborhood of the current point as does Levenberg, because (3.6) may not be a good

approximation to 1 (Ilf(a + - IIf(x)ll ) if the minimizer p* is large in magnitude,
and consequently the sum of squares may not be reduced at x + p*. (In Hartley [1961],

a linesearch is used with the Gauss-Newton direction for the same reason.) Morrison

proves that the solution p , to

min gTp + -pT(H + AD)p
PER.

for A > 0 is the constrained minimum of (3.6) on the sphere of radius IIDpAII 2, and

that 11p\112 --+ 0 as A -* 00. In Morrison's method, the step bound 6 is the independent

parameter, rather than A. No specifications are given for either 6 or D, although it is

implied that they can be chosen heuristically for a given problem. Instead of minimizing

(3.6) subject to IIDpII 2 _< 6, constraints of the form dixi < 6 are imposed, and the

resulting subproblem is then solved using the eigenvalue decomposition of II. Although

the theory and methods apply for any positive semi-definite H in (3.6), no generalization

to unconstrained minimization is mentioned.

Marquardt [1963] extended Morrison's work, showing that the vector p, that solves

(3.3) becomes parallel to the steepest-descent direction as A -+ 00, so that p\ in-

terpolates between the Gauss-Newton search direction, p0, and the steepest-descent

direction, p... He points out that the method determines both the direction from the

current iterate to the next one, and the distance between the iterates along that direc-

tion, and that increasing A decreases the step length, while shifting the direction away

from orthogonality to the gradient of the sum of squares. Marquardt's strategy con-

trols A automatically by multiplying or dividing the current value by a constant factor v

greater than 1. He maintains that the minimum of the Gauss-Newton model should be

taken over the largest possible neighborhood, that is, that A should be chosen as small

as possible, so as to achieve faster convergence by biasing the search direction toward

the Gauss-Newton direction when Gauss-Newton methods would work well. Thus, at

the kth iteration, Ak = A 1V/ is tried first, and then increased if necessary by mul-

tiples of v until a reduction in the sum of squares is obtained. A shortcoming of this

scheme is that A is always positive, so that the constraint in (3.1) is active in every

subproblem, and consequently a full Gauss-Newton step can never be taken. Also, no

efficient method is given for solving (3.3) for different values of A. Motivated by statis-

tical considerations, Marquardt uses the diagonal of jTj for the scaling matrix D (one

of the alternatives proposed by Levenberg), and mentions that this scaling has been

12



widely used as a technique for computing solutions to ill-conditioned linear least-squares

problems.

Since the appearance of Marquardt's paper, and also that of Goldfeld, Quandt, and
Trotter [19661, which independently proposed trust-region methods for general uncon-

strained optimization, much research has been directed toward improvements within the

framework presented there. Bard 119701 takes the eigenvalue decompostion of JTJ at

each iteration, so that (3.3) can be easily solved for several values of A, and so that

it will be known whether or not jTj is singular. Bartels, Golub, and Saunders [1970]

show how to use the SVD of J instead of the eigenvalue decomposition for the same

purpose. They also give an algorithm for computing A given 6 that involves determining

some eigenvalues of a diagonal matrix after a symmetric rank-one update. Meyer [1970]

discusses the use of a linesearch with Marquardt's method (see also Osborne [1972)).

Shanno [19701 selects A so that p), is a descent step for Ilf(X)12. The value A = 0

is tried first, and then increases are made by multiplying a threshold value by a factor

greater than one until 0'(A) < 0, where O(A) = IIf(X + p )112. In addition, a linesearch

is also used when cos(p,,,g) is above a threshold value, that is, when p is judged to

be nearly in the direction of -g. Shanno's method is meant for general unconstrained

or linearly-constrained minimization, as well as for nonlinear least squares.

Several methods have attempted to approximate Levenberg-Marquardt directions
by a vector that is the sum of a component in the steepest descent direction, and

a component in the Gauss-Newton direction pGN. Jones [19701 combines searches

along a spiral arc connecting PaN and the origin with parabolic interpolation in order

to obtain a decrease in the sum of squares. If a reduction is not achieved after trying

several arcs, then the steepest descent direction is searched. The method of Powell

[1970a] for nonlinear equations and [1970b] for unconstrained optimization searches
along a piecewise linear curve. The algorithm for unconstrained optimization requires

some agreement between the reduction predicted by the quadratic model and the actual

reduction in the sum of squares before the step is accepted. Global convergence results
that include use of the quadratic model (2.1) for nonlinear least squares are given in

Powell [1975 (see also Mori [19831). Steen and Byrne [1973 approximate a search along

an arc that intersects g at a nonzero point. Their algorithm requires that jTj be scaled

so that its smallest eigenvalue is 2, which they accomplish by computing (jTj)-1 and

finding either II(JT j)- 1 11 or II(JTJ)-1II.o A diagonal of unspecified small magnitude

13

-- ? 4

. .. . .... . .. . . . . .. .. ..f ., , . _. - = 3,.,



is added to jTj in the event of singularity. A difficulty with any algorithm based on

this type of approach is that it is not clear how to define the approximation when the

Gauss-Newton direction is not numerically well defined.

Fletcher 11971] implements a modified version of Marquardt's algorithm, in which

adjustments in the parameter A are made on the basis of a comparison of the actual

reduction in the sum of squares

~~ (2tz+P)I~-IfxI~ (3.7)2

with the reduction
gTP9 P J Jp (3.8)

predicted by the model (3.2), which is the optimum value of the objective in (3.1) (see

also Powell [1970b]). The step px, is taken only when there is sufficient agreement

between (3.7) and (3.8), instead of accepting p\ whenever the trial step results in a

reduction in the sum of squares. Fletcher also introduces more complicated techniques

for updating A. The scheme for decreasing A differs from that given by Marquardt in

that division by a constant factor is used only until A reaches a threshold value, A0,

below which it is replaced by zero. This modification is motivated by a desire to allow

the Gauss-Newton step (A = 0) when Gauss-Newton methods would work well, since

A is always positive in Marquardt's method, and to allow the initial choice of A = 0

rather than some arbitrary positive value. Because numerical experiments show that

multiplying by a fixed constant factor may be inefficient, Fletcher uses safeguarded

quadratic interpolation to increase A when (3.7) and (3.8) differ substantially. If the

current value of A is nonzero, then it is divided by a factor

0.1, if amn < 0.1;
7 = ,~mn, ifminE E [0.1,0.5; (3.9)

0.5, if Oin > 0.5,

where ani. is the minimum of the quadratic interpolant to the function O(a) =

Ilf(z + ap)ll' at 0(0), 0'(0). and 0(l). There is also a provision to increase A = 0
to the threshold value A, under certain circumstances. The choice of A, appears to be

a major difficulty.
Fletcher gives some theoretical justification for choosing A, to be the reciprocal

of the smallest eigenvalue of (JTJ)-l. Since he chooses to solve (3.3) directly for

each value of A via the Choesky factorization, rather than compute the eigenvalue
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decomposition of jTj or the singular values of J, the minimum eigenvalue of jTj is

not available without further computation. He therefore updates the estimate of Ac

only when A is increased from 0, calculating (jTj)-l from the Cholesky factorization

of jTj, and then takes either A, = 1/ I(JTj)-1 1Lo, or A, = 1/trace ((jTJ)-1 ). A

drawback is that A. is not defined when jTj is singular, and it is not well defined when
jTj is ill-conditioned. Harwell subroutine VAOTA is an implementation of Fletcher's

method. It allows the user to select the scaling matrix D, which then remains fixed

throughout the computation. The default for the scaling matrix is the square root of

the diagonal of jTj at the starting value.

An efficient and stable method for solving (3.3) for several values of A based on

the linear least-squares formulation (3.4) is given by Osborne [1972]. The method is

accomplished in two stages. First, the QR factorization of J is computed, to obtain

Q( 0 ) A ) = (GRD)' (3.10)

after which a series of elementary orthogonal transformations are applied to reduce

the right-hand side of (3.10) to triangular form. Thus it is only necessary to repeat

the second stage of this procedure when the value of A is changed, provided the QR

factorization of J is saved. In a later paper, Osborne [19761 discusses a variant of

Marquardt's algorithm for which he proves global convergence to a stationary point of
fTf under the assumption that the sequence {Ak} remains bounded. In this method,

he uses a simple scheme similar to the one proposed by Marquardt to update A, but

controls adjustments in A by comparing (3.7) and (3.8). His implementation takes D

to be the square root of the diagonal of jTj, as in Marquardt's method.

The algorithm of Mori [19781 adjusts the step bound 6 in (3.1) rather than X, a

strategy used in trust-region methods for unconstrained optimization (see Mori [1983

for a survey). Changes in 6 depend on agreement between (3.7) and (3.8); increases

are accomplished by taking 6 k+1 = 2IiDkpkI12, while 6 is decreased by multiplying by

the factor 7 defined by (3.9). In order to obtain A when the bound in (3.1) is active,

the nonlinear equation

IIDpIb - 6 = 1(jTj + \ DTD) - 1 gI2 - b = 0 (3.11)

is approximately solved by truncating a safeguarded Newton method based on the work

of Hebden (1973] (see also Reinsch (1971]). Mori reports that, on the average, (3.11)
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is solved fewer than two times per iteration. Also, he proves global convergence to

a stationary point of fTf, without assuming boundedness for {\k}. Many computa-

tional details are given, including an efficient method for calculating the derivative of

*(A) in (3.11) that uses the QR factorization of J. A modification of the two-stage

factorization described in Osborne (1972] that allows column pivoting is used to solve

(3.3). Subroutine LIIDER in MINPACK [Mor6, Garbow, and Hillstrom (1980)] is an

implementation of the method. Variables are scaled internally in LMDER according to

the following scheme: the initial scaling matrix Do is the square root of the diagonal of
jTj evaluated at z 0, and the ith diagonal element of Dk is taken to be the maximum

of the ith diagonal element of Dk-1 and the square root of the ith diagonal element

of jTj. Numerical results are presented indicating that this scaling compares favorably

with those used by Fletcher, and by Marquardt and Osborne. The user also has the

option of providing an initial diagonal scaling matrix that is retained throughout the

computation.

Nazareth [1980, 1983] describes a hybrid method that combines a Levenberg-

Marquardt method with a quasi-Newton approximation Rk to the full Hessian. The

search directions solve a system of the form

(ok JTjA + (1 - Ok)HIA + AA DT D,) P = -9k,

with 0
k E [0,1] and Ak ! 0. He compares the reduction in the sum of squares predicted

by both the Levenberg-Marquardt and quasi-Newton models with the actual reduction,

and then chooses 0 & on the basis of this comparison. In Nazareth [19831, a simple

version of the hybrid strategy is implemented that uses Davidon's optimally conditioned

update, with Dk = I, and a variation of Fletcher's [1971] method for updating A.

Results are reported for a set of eleven test problems - including five problems with

nonzero residuals- and compared to the use of the algorithm as a quasi-Newton method

(19 = 0) or a Levenberg-Marquardt method (k = 1). He concludes that the hybrid

method is somewhat better for the problems with nonzero residuals, and recommends

development of a more sophisticated implementation.

4. Corrected Gauss-Newton Methods

Gill and Murray [19761 propose a linesearch algorithm that divides R into comple-

mentary subspaces * and N, where * g R(jT), and .9 is nearly orthogonal to 7R(JT).
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The search direction is the sum of a Gauss-Newton direction in 7?., and a projected New-

ton direction in R(. This strategy avoids a shortcoming of Gauss-Newton methods -

that components of the search direction that are nearly orthogonal to I?(jT) may not

be well determined when J is ill-conditioned - because each component is computed

from a reasonably well-conditioned subproblem. The vector z - x* may become almost

entirely in I.(jT) in a Gauss-Newton method, yet the algorithm computes a search

direction that is virtually orthogonal to IZ(jT) due to ill conditioning in the Jacobian

(see Fraley [1987bD. Gill and Murray show that both Gauss-Newton algorithms de-

fined by (2.3) and Levenberg-Marquardt algorithms generate search directions that lie

in IZ(jT), while the Newton search direction generally will have a component in Af(J),

the orthogonal complement of IZ(jT), whenever J has linearly dependent columns. For

problems with small residuals, they point out that jTj is a reasonable approximation

to the full Hessian in I(jT), but not in .A(J). Thus, in situations where x - x* is

orthogonal to 7?(jT), and J is well-conditioned but has linearly dependent columns (for

example, when m < n), the Gauss-Newton and Levenberg-Marquardt directions have

no component in the direction of x - x*, while Newton's method and also the method

of Gill and Murray would have components in both I?(jT) and A'(J).

The basic idea of the method is as follows. Suppose that

J = QTVT (4.1)

is an orthogonal factorization of J, in which T is triangular with diagonal elements in

decreasing order of magnitude (either a QR factorization with column pivoting or the

singular-value decomposition), Let

V = (Y Z) (4.2)

be a partition of V into the first grade(J) columns and the remaining n - grade(J)

columns. The columns of Y form an orthonormal basis for t, and those of Z form an

orthonormal basis for .. The Newton search direction for the nonlinear least-squares

problem is given by
(jTj + B)p = _jTf,

with

i=1
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or, equivalently,
VT(jTj + B)p = -VTjTf, (4.3)

since V is nonsingular. Using (4.2). equation (4.3) can be split into two equations:

yT(jTj + B)p = _yTjTf, (4.4)

and

ZT(jTj + B)p = -ZTjTf. (4.5)

Substituting p = Yp, + Zpz into (4.4) yields

yTjTjyp, + yTjTjZp, + yTBp = _yTjTf.

Since grade(J) is chosen to approximate rank(J), IIJZII is presumed to be zero, so

that yTjTjZp, vanishes. Also, for zero residual problems, the term yTBp would be

small near a minimum relative to yTjTjypy, since [BI approaches zero. Defining C

to be lix - z'*l, where z" is a minimum at which the residuals are zero, and assuming

II!1 = o(E) we have

yTjTjyp, = 0(E); yTBp = 0( 2 ); yTjTf = 0(C).

The range-space component of the search direction is therefore chosen to satisfy

yTjTjyp,= _yTjTf. (4.6)

With grade(J) = rank(J), the vector Yp, is the minimal 12-norm least-squares solution

to Jp -- -f, and is therefore a Gauss-Newton direction. For the null-space portion,

since JZ = 0 is assumed, (4.6) reduces to

ZT Bp = ,

which may be solved for Zp, given Ypy from (4.5) using

ZT BZpz = -ZT BYp,. (4.7)

When exact second derivatives are not available, the use of finite difference approxima-

tions along the columns of Z is suggested.

A version of this algorithm called the corrected Gauss-Newton method [Gill and

Murray (1978)] forms the basis for the nonlinear least-squares software currently in the
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NAG Library 11984]. It uses the singular-value decomposition of J, rather than a QR

factorization. Rules based on the relative size of the singular values are given for choosing

an integer grade(J) to approximate rank(J), and an attempt is made to group together

singular values that are similar in magnitude. The method is not as sensitive to grade(J)

as Gauss-Newton is to rank estimation, both because of the division of the computation

of the search direction into separate components in k and ,, and because grade(J)

is varied adaptively based on a measure of the progress of the minimization. Moreover,

the rate of convergence is potentially faster than Gauss-Newton or Levenberg-Marquardt

methods on problems with nonzero residuals. The quantity grade(J) is reduced when

the sum of squares is not adequately decreasing, so that there is the potential of having

X R' (with exact second derivatives, this implies taking full Newton steps) in the

vicinity of a solution. The derivation below shows how the corrected Gauss-Newton

method differs from the earlier version based on the QR factorization.

Because of (4.1), jTj can be written as VTTTVT, so that (4.3) is equivalent to

TTTVTP + VTBp = -TTQTf. (4.8)

Using p = Yp, + Zpz, along with

VTy- (Iqrade(J)) and VTZ 0 I d J)0 Ing.ade(J)

(4.8) becomes

TTT Igrae(J) p, + TTT ( 0 ) pz + VTBp - -TTQT f . (4.9)

If we let
T(T11 T2

T = 21 T22

be a partition of T, where Tj1 is the submatrix consisting of the first k rows and columns

of T, then

TTT (T +TT) (T12T 12 + T T22)

and (4.9) can be split into two equations :

(TTT11 +TT
1 T21)PY +(TITjT 12 +T2jT 22)PI Bp= -(TI )QTf, (4.10)

and

(TITTI + T T 21 )pI + (T'TI 2 + T2 T2 )p + ZTBp - (T1 , T2 )QTf. (4.11)
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As in the earlier version, the term YTBp is ignored in (4.10). Moreover, in the case

that (4.1) is the singular-value decomposition, both T12 and T21 vanish and the two

equations can be further simplified to

S2p - (S, 0 )QTf, (4.12)

and

S2p. + ZTBP - - (0 S 2 ) QT f, (4.13)

where

S 1 -T 11 and S2=T 22 .

Note that S, and S2 are diagonal matrices, and that the p, term in the second equa-

tion could not be ignored if (4.1) were a triangular factorization of J. because then

(TITT7 + TTT2 ,) could not be assumed negligible relative to (TTT 2 + TT2T 2 2 ). The
equations that are ultimately solved are

SIP_ = -( Igrde(J) 0)QTf, (4.14)

and

(S2 + ZTBZ)p =-( 0 52 ) QTf _ ZTBpy. (4.15)

The matrix S2 + ZTBZ is replaced by a modified Cholesky factorization if it is compu-

tationally singular or indefinite. The range-space component is a Gauss-Newton search

direction, while, in the positive-definite case, the null-space component is a projected

Newton direction.

When no modification is necessary, the subproblem being solved is

m ng pT(jTj + B)p (4.16)

subject to Jp = -f,

where '=' is taken in a least-squares sense if the rows of J are linearly dependent, as
in the case when m > n, and otherwise as equality. Subproblem (4.16) is an equality

constrained quadratic program. When rank(J) = grade(J) = n, its solution is a full-

rank Gauss-Newton direction that is completely determined by the constraints in (4.16).

When rank(J) = grade(J) < n, the search direction is computed as the sum of two

mutually orthogonal components, defined by equations (4.14) and (4.15). In this case

S2 = 0, so that the projected Hessian in (4.15) is ZTBZ and therefore involves only
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the second derivatives of the residuals. We shall return to this point in Section 7, when

we discuss SQP methods for nonlinear least squares.

Although the range-space component solving (4.14) can never be a direction of in-

crease for fTf (see Fraley 11987a]), the search direction computed by (4.14) and (4.15)
may not be a descent direction for fTf, regardless of whether or not S22 + ZTBZ is

modifed, on account of the p, term in (4.15). Thus, if Icos(g,p)j is smaller than some

prescribed value, or if gTp is positive, then a modified Newton search direction (corre-

sponding to the case grade(J) = 0) is used instead. A finite-difference approximation to

the projected matrix ZTBZ along the columns of Z, and a quasi-Newton approximation

to B (see the discussion in Section 5) are given as alternatives to handle cases in which

second derivatives of the residual functions are not available or are difficult to compute.

Gill and Murray test their method on a set of twenty-three problems, and find that when

quasi-Newton approximations to B are used, the algorithm does not perform as well as

it does with exact second derivatives or finite-difference approximations to a projection

of B. They observe only linear convergence for the quasi-Newton version on problems

with large residuals. The algorithms are implemented in the NAG Library [1984] as

subroutine E04HEF which uses exact second derivatives, and subroutine E04GBF which

is the quasi-Newton version.

5. Special Quasi-Newton Methods

Another approach to the nonlinear least-squares problem is a based on a quadratic

model
2 Tp + 1pT( Tj + + )p,

where B involves quasi-Newton approximations to the term

m

B(x) = Z,()V 2 0i(X)
i= I

in the Hessian of the nonlinear least-squares objective. Brown and Dennis [19711 first

proposed a method in which the Hessian matrix of each of the residuals was updated

separately. This technique is impractical because it entails the storage of m symmetric

matrices of order n, and more recent research has aimed to approximate B as a sum.

Dennis [19731 suggests choosing the updates to satisfy a quasi-Newton condition

Bk+lSk = k- +lJk+l,5.)
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where

Sk Xk+1 - Xk and Yk g-- 9k+1 - gk.

It is implied that the update can then be chosen as in the unconstrained case, although

there is some ambiguity as to how this should be done. One possibility is to update Bk
directly to obtain k+, subject to a quasi-Newton condition such as (5.1) on Bk+lsk.

Another approach consistent with Dennis' description is to modify flk = J~ljk+l+Bk,

requiring the updated matrix Htk+1 to satisfy a quasi-Newton condition

Hk k+s = Yk. (5.2)

Then k+1 = rk+1 -JT+lJk+ 1 is the new approximation to B at xk+1. Depending on

the update and quasi-Newton conditions, the two alternatives may not yield the same

result. Moreover, updates defined by minimizing the change in the inverse of Bk, such

as the BFGS update to Bk, make no sense in this context, since the matrix B would

not, by itself, be expected to be invertible.

Betts 119761 implements a linesearch method in which the symmetric rank-one

update (see Dennis and Mori [1977]) is applied to h, with the quasi-Newton condition

Bk+1Sk = Yk - JkJkSk. (5.3)

This scheme is equivalent to applying the symmetric rank-one formula to the matrix
H~k = jTjl + fA, with the updated matrix /tk+1 satisfying (5.2), and then taking

hk+1 = fIk+l- JJ. He compares this algorithm with a Gauss-Newton method, and

also with a hybrid algorithm that starts with Gauss-Newton, switching to the augmented

Hessian /]k when the iterates are judged to be sufficiently close together to be near a

solution. It is not clear whether the update is performed when f is not used in the hybrid

method. Betts reports observing quadratic convergence for the special quasi-Newton

methods. For further discussion of these results, see Section 2.

Bartholomew-Bias [1977] compares the PSB update (see Dennis and Mori [1977])

and the symmetric rank-one update applied directly to b in a linesearch method. These

updates are tested with the quasi-Newton condition (5.1), as well as with the condition

#,+Ifs l jTfklBk~~k= -k (5.4)
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which is derived from the relation

M M

Oi4(Xk+1)V 2 4i(xk+I)Sk = Z (Xk+1) [V~i(Xk+l) - V~i(Xk) + (118k 112)]2=1 i=l

Jk+fk+l - Jkfk+l

(see also Dennis (1976]). Bartholomew-Biggs points out that, in general, quasi-Newton

approximations to B may not adequately reflect changes that are due to the contribution

of the residuals. For example, when each residual function q$i is quadratic, and conse-

quently each V 2
0, is constant, Bk+1 may differ from Bk by a matrix of rank n. For this

reason, he does some experiments with updating T'Bk for 7- = fT4lfk/fkfk, which is

the appropriate scaling for the special case in which fk+I = "fk and the 4i are quadratic.

In his implementation, a Levenberg-Marquardt step is used whenever the linesearch fails

to produce an acceptable reduction in the sum of squares and cos(g,p) > -10'.

The scaled symmetric rank-one update with (5.4) is selected to compare with other

methods after preliminary tests, because it exhibited the best overall performance, and

required fewer Levenberg-Marquardt steps. The other methods tested include a Gauss-

Newton method, a method that combines Gauss-Newton with a Levenberg-Marquardt

method, an implementation of Fletcher's (19711 Levenberg-Marquardt method, and a

quasi-Newton method for unconstrained optimization. All of the fourteen test problems

have nonzero residuals. Bartholomew-Biggs finds that the special quasi-Newton method

is more robust than the other specialized methods for nonlinear least-squares, and that

it is particularly suitable for problems with large residuals. He also observes that on

problems on which the Gauss-Newton and Levenberg-Marquardt-based methods per-

form poorly, the special quasi-Newton method is more effective than the quasi-Newton

method for general unconstrained optimization. Nothing is said about the observed rate

of convergence for any of the methods. He concludes that further research is needed to

determine the best updating strategy, some desirable features being hereditary positive

definiteness, and the ability to update a factorization of B. Finally, he indicates that

it would be worthwhile to develop a hybrid method combining Gauss-Newton with a

special quasi-Newton method, in order to avoid the cost of the updates on problems

that are easily solved by Gauss-Newton methods.

Gill and Murray 11978] discuss a linesearch method in which they use the augmented

Gauss-Newton quadratic model only to compute a component of the search direction in a

subspace that approximates the null space of the Jacobian (see the preceding section).

23



They apply the BFGS formula for unconstrained optimization (see Dennis and Mori

119771) to the matrix ik Jk+1Jk+1 + B- with the quasi-Newton condition (5.2), and
then form bk+l = -k+1 jT+Jk+,. The choice of the BFGS update is based on

performance comparisons to a number of other updates, including the symmetric rank-

one update and Davidon's optimally-conditioned update [Davidon (1975)], as well as the

symmetric rank-one update applied to Hk = JTJk+Bk used in Betts 119761. They pointottai T jT

out that, if ,k+,Jk+l + Bk is positive definite, and yTksk > 0, then Jk+1 Jk+1 + Bk+i is

also positive definite with this scheme. In order to safeguard the method, the projected

approximate Hessian is replaced by a modified Cholesky factorization when it is singular

or indefinite. In addition, if cos(p,g) exceeds a fixed threshold value, a modified Newton

step with the full augmented approximate Hessian is taken. See Section 4 for a summary

of their observations on the performance of the methods.

Dennis, Gay, and Welsch [1981a] apply a scaled DFP update (see Dennis and Mori

[1977]) to Bk at each step. The new approximation Bk+ 1 solves

min 11H- 2 (rkBk - B)H-/ 2 IF (5.5)
B;H

subject to

Hsk = Yk; H positive definite (5.6)

B.sk = Jk'+fk+l - Jfk+l; B symmetric, (5.7)

where

= min{lyksklsk B kl, 1}. (5.8)

The scale factor rk is based on the observation that the quasi-Newton approximation

to B is often too large with the unscaled update, on account of the contribution of
the residuals. The term Iv S,,/4BkSk I in 7-k is derived from the self-scaling principles

for quasi-Newton methods of Oren [1973], and attempts to shift the eigenvalues of the

approximation Bk to overlap with those of B,, using new curvature information at Xk.

This method forms the basis for the ACM computer program NL2SOL [Dennis, Gay, and

Welsch (1981b)], which is distributed by the PORT Library [19841 as subroutines N2G
and DM2G. It is implemented as an adaptive method, in that Gauss-Newton steps are

taken if the Gauss-Newton quadratic model predicts the reduction in the function better

than the quadratic model that includes the term involving h. A trust-region strategy

is used to enforce global convergence. Numerical results are given in Dennis, Gay, and
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Welsch (1981a] for a set of twenty-four test problems, many with two or three different

starting values.

AI-Baali and Fletcher [1985] describe some linesearch methods that are similar to

the method of Dennis, Gay, and Welsch [1981a] discussed above. They observe that

the DFP update defined by (5.5) - (5.8) is equivalent to finding Hr,+1 to solve

min IIH-1/ 2(JT+Jk+l + + rihB - H)H-"'JIF (5.9)

subject to

Hsk = yk; H positive definite (5.10)

flsh = JTifa+i - JTfa+i + J+lJk+1 sk; H symmetric,

where
"rk =_ minflyTs /k b , l}b

and then forming
Bk+l = +_ J+Ijk+i.

Moreover, they use the condition

Hsk = Vk; H positive definite, (5.11)

with
Yk - Jk+l+a + jT+ fk+1- j rfk+l = Yk + O(Ilsklj2 ) (5.12)

as an alternative to (5.10), and mention that (5.10) has been replaced by (5.11) in

newer versions of NL2SOL. The claim is that the updated matrix is almost always pos-

itive definite. However, if the matrix JT+I +

'k is replaced by a quantity f'k that is calculated by a method similar to a Rayleigh

quotient iteration, so that J+lJ+l + 'kfk is positive semi-definite and singular. A

corresponding BFGS method is also given in which the update is defined by

min lH"2((J4+Jk+1 + rkB k)- - H-.)H-/211
RI;H

instead of (5.9). They conclude from computational tests (described in AI-Baali [19841)

that their method is somewhat more efficient in terms of the number of Jacobian eval-

uations than NL2SOL, but requires more function evaluations, and that there is no sig-

nificant difference between the DFP and BFGS updates. AI-Baali and Fletcher also

25

'C



introduce scaling factors based on finding a measure of the error in the inverse Hessian.

They observe that, for the BFGS update for unconstrained optimization,

IIHC1 (H;- - H'+)H;12 12 = Ak(Hk;Yk),

where 2_ (yTH;"Yk -2 Yk.13
Ak(Hk; Yk)~ Yk -2 7TsT + 1. (5.13)

~~Sk / sHkSk

Hence an "optimal" value of 'r can be found by minimizing Ak(J+iJk+l + TBk) as

a function of r. Newton's method is used to find r, an iterative process that requires

factorization of j3+IJk+I + rBk for each intermediate value of r. They were apparently

unable to draw any broad conclusions from numerical experiments with this scaling, and

refer to AI-Baali (1984] for details.

A convergence analysis for minimization algorithms based on a quadratic model in

which part of the Hessian is computed by a quasi-Newton method is given by Dennis and

Walker [19811 (see also Chapter 11 of Dennis and Schnabel [1983]). These results are

restricted to methods that satisfy a least-change condition on the matrix ilk (analogous

to the PSB and DFP updates). Only a fairly mild assumption is needed to prove

superlinear convergence to an isolated local minimum x*: that the vector yB in the

quasi-Newton condition

BkSk = Yk'

be chosen so that the norm of the update is

O(MaX{IlXk - zil, llk+1 - XjII}),

for some p > 0. This assumption is satisfied for y' in each quasi-Newton update

to Bk described above. Their treatment of inverse updates is for the case in which

part of the inverse Hessian is computed, and hence does not apply here. To the best

of our knowledge, no convergence results have yet been proven for scaled versions of

the updates, or for updates to J+lk+I + Bk that are not equivalent to some direct

quasi-Newton update to Bk.

6. Conjugate-Gradient Acceleration of Gauss-Newton Methods

Ruhe [1979] uses preconditioned conjugate gradients to speed up convergence of

Gauss-Newton methods. General references on conjugate gradients include Fletcher
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[1980], Chapter 4, and Gill, Murray, and Wright [19811, Chapter 4. We give a brief
explanation below.

The linear conjugate gradient method minimizes an n-variate quadratic function

Q(x) =qTp p q p

in at most n iterations. The iteration is

k = -gk + /i-lPk-l; (6.1)

Xk+= Xk + akPk

where

Pk H~k119k 2

9k = VQ(Xk) = q + Ilxk+I.

The method produces a sequence of search directions that are I-conjugate, that is

pJfpj =0 if i j.

The number of iterations needed to minimize Q by conjugate gradients (with exact arith-
metic) is equal to the number of distinct eigenvalues of II. The idea of preconditioning
is to transform I into a matrix whose eigenvalues are nearly identical in magnitude. If
a positive-definite matrix IV is used as a preconditioner, then convergence occurs in
the same number of steps that would be taken for a quadratic function with the Hessian

matrix

IV-1/ 2
IIjV-1/2"

The ideal preconditioner would be IV = II, but since conjugate gradients are competitive
mainly when n is large, an approximation that is relatively inexpensive to factorize is
used. For a smooth nonlinear function ."(x), the conjugate gradient method (6.1) can
also be applied, with k = V F(xk) and ak determined by a linesearch, with safeguards
to ensure descent. There are several possible choices for k that are equivalent to the one
given above for the quadratic case (see, e. g., Fletcher [1981], Chapter 4). The method
is often restarted every n iterations on account of the variation in V 2y(x) for non-
quadratic functions (e. g., Gill, Murray, and Wright [19811, Chapter 4). Preconditioners
for the non-quadratic case attempt to approximate V 2.Y(X).
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In Ruhe's algorithm, the matrix jTj is used as the preconditioner, and an orthog-

onal factorization of J is used to compute the necessary quantities. The method is

applied to problems in which the residuals are nonzero and the Jacobian has full rank,

and is restarted every n iterations. He concludes that the preconditioned conjugate-

gradient method never increases the total number of iterations required to solve a given

problem relative to Gauss-Newton, and that significant improvements in the speed of

linear convergence of Gauss-Newton on large-residual problems can be achieved with

conjugate-gradient acceleration.

AI-Baali and Fletcher [19851 point out that conjugate-gradient acceleration of the

type described by Ruhe is equivalent to applying a BFGS update to the Gauss-Newton

approximate Hessian jTj at each step. They implement and test both this method

(without restarts) and a scaled version, where the scale parameter r is chosen to minimize

Ak(T"JTJk ; Ik) as a function of r (see (5.13)). They give no conclusions as to the

relative efficiency of the scaled and unscaled versions of the method, but find that the

modified methods offer some improvement over Gauss-Newton, while exhibiting the

same difficulties.

7. Sequential Quadratic Programming (SQP) Methods

Fraley [1987a] proposes algorithms that solve quadratic programming subproblems

whose formulation is based on convergence properties of sequential quadratic program-

ming methods for constrained optimization, and on geometric considerations in non-

linear least squares. The motivation behind these methods is as follows. Recall that

the Hessian matrix of the least-squares objective can be separated into the sum of two

components involving different types of derivative information:

V2(1f~f) =jTj+B,

where
m

B E O iV'O.
i=1

The corrected Gauss-Newton methods (Section 4) calculate a search direction that is

separated into two orthogonal components when 0 < grade(J) < n, and can be viewed

as SQP methods. When grade(J) = rank(J) < n, the contributions of jTj and of

B (or of an approximation to B) are essentially decoupled because the contribution of
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jTj in the projected Hessian is zero. No such separation is possible when rank(J) = n.

In any case, grade(J) < n may be selected based on the progress of the minimization

as well as the singular values of J, so that partial separation of jTj and B may occur

between the extremes of Gauss-Newton (grade(J) = rank(J)), and a full Newton-type
method (grade(J) = 0). The strategy of making a quasi-Newton approximation to

B which is then added to jTj in a full Newton-type method has not been successful

outside a neighborhood of the solution, unless it is combined with other techniques (see
Section 5). The approach taken in Fraley [1987a] is to use a quasi-Newton approximation

to the full Hessian, while separating out some of the contribution to the curvature due
to jTj by including first-order information about the residuals as constraints.

A search direction is computed as the solution to a quadratic program (QP) of the
form

m, Tp1 pTHp (7.1)

subject to

_bL < Ap + c < b'

where

bL > 0 and bu > 0.

In SQP methods for constrained optimization, H approximates the Hessian of a La-
grangian funtcion in order to take into account the curvature of the constraints that are
active at the solution (e. g., Powell [19831, Gill et al. [1985b, 1986b], Nocedal and Over-
ton [1985], Stoer [1985], and Gurwitz [1986]). For nonlinear least squares, it suffices for
H to approximate the Hessian matrix of I fTf even if some of the constraints in (7.1)
are active at a solution x*, because g(x*) = 0. These methods have the potential to
converge faster than quasi-Newton methods for unconstrained optimization, since only
the projection of the Hessian in the null space of the active QP constraint normals -

rather than the full Hessian - need be positive definite as a condition for superlinear

convergence.

Two classes of suitable QP constraints for (7.1) are described : constraints on the
directional derivatives of individual residuals, and constraints based the QR factorization
of J. A departure from other algorithms is that information about the residuals, and
interrelationships between residuals, can be used to construct the subproblems (the
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algorithm of Davidon [1976] is an exception - see Section 11). In the SQP algorithms,
a set C of desirable constraints is chosen first, which may be infeasible or may otherwise

exclude all suitable search directions. For example, such a set of constraints is

{VTip =0,; i = 1,2,...,m}. (7.2)

Any p satisfying Veip = -6i is a descent direction for 4i if Oi # )0 and is otherwise
orthogonal to V4,i. The unconstrained minimum PQN of the QP objective in (7.1) is a
descent direction for the nonlinear least-squares objective provided H is positive definite.
Therefore, as long as PQ- is considered satisfactory, an acceptible search direction will

eventually be obtained by either removing some constraints from C, or else by perturbing
the constraints in C so as to enlarge the feasible region. Based on this reasoning, she
proposes two different strategies (which could also be combined).

One strategy uses a QP to select a subset of constraints in C as the feasible region
for (7.1). Several quadratic programs may be solved within a single iteration in order

to compute a search direction, which is justified for two reasons. First, starting the
solution process for a QP with information about the solution of a related subproblem

can often lead to significant savings in QP iterations (see, e. g., Gill et al. [1985a]).

Also, when the cost of a function evaluation is much greater than the cost of a QP
iteration, the effort involved in obtaining the search direction by solving more than one

subproblem may be worthwhile if it results in a substantial reduction in the number of
outer iterations.

It is difficult to automate the selection of QP constraints, and the evaluation of

the current QP solution as a candidate for the search direction. For example, each of
the constraints in (7.2) could be considered separately in order of decreasing residual
size, with the object of including as many of the constraints as possible. A constraint is

added to the current constraint set (initially empty) if the corresponding QP computes
an "acceptable" search direction j. In addition to the requirement that gTp < 0, Fraley

uses a lower bound on the magnitude of p, and an upper bound on cos(gp), as the
criteria for accepting J. Some other examples that use constraints based on the QR
factorization are very similar to corrected Gauss-Newton methods (Section 4).

In the second approach, constraints in C are modified in order to obtain a suitable

feasible region. This is accomplished by treating constraint bounds as variables in a QP.
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Using the constraint set (7.2), Fraley shows how these SQP algorithms are related to

Gauss-Newton and Levenberg-Marquardt methods. The QP

min bTb
b;p

subject to

-b5 _p+ f 5 b (7.3)

b >: 0,

computes the smallest possible perturbation that allows all of the (7.2) to intersect. In

the solution (b; p) to (7.3), the vector P is a Gauss-Newton search direction. When J

is ill-conditioned, it is possible that the constraints in (7.2) do intersect (b = 0), but

that the intersection occurs at a vector P that is very large in magnitude. For w > 0,

the QP

minbTb + wPTP
b;p

subject to

-b < Jp + f :_ b (7.4)

b > 0,

forces ibti to increase when JIpJJ would otherwise be large. In the solution (b; 3) to (7.4),

the vector P is a Levenberg-Marquardt search direction. In an SQP algorithm based on

(7.3) (respectively, (7.4)) there is the option of using (3) as a search direction, or of

using b (b) to define bounds for a second QP of the form (7.1), from which the search

direction is computed.

Fraley proposes a number of variations of these basic SQP algorithms and tests some

of them on a set of fourteen problems. She uses the BFGS method to approximate H

in (7.1) just as in unconstrained optimization, and observes that the approximation

retains positive definiteness throughout. She finds the SQP methods work well on some

problems, and poorly on some others, so that it is not possible to say anything conclusive

about their performance relative ^o existing methods.

8. Continuation Methods
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Continuation methods have also been applied to nonlinear least-squares problems.
These methods solve a sequence of parameterized subproblems

min$(z;ri); i = 1,2,...,imax (8.1)

where

O = "O < r, < ... < ,,=l

and

arg min (z;O) = zo and arg min4(x;1) = x.

The idea is that methods that have fast local convergence, but may not be robust in a

global sense, can be applied to solve each subproblem in relatively few steps, because

information from the solution of previous subproblems may be used to predict a good

starting value for the next one.

DeVilliers and Glasser [19811 define
*(~) 1 21

(; r)- II=1f(_) +- (r - 1)Ilf(zo)(I1 (8.2)

where k is a positive integer, with a fixed spacing between the parameters ri in (8.1).

They test two different continuation methods, one that uses Newton's method (with line-
search) to solve the intermediate problems, and one that uses a Gauss-Newton method

(with linesearch). An unspecified "device" is included in the implementation of both

minimization techniques to ensure a decrease in the objective at every iteration. The

continuation methods are compared with results obtained by applying both minimization

algorithms to the original problem. Intermediate subproblems are not solved exactly ;the

criterion

where E, = 10- 2 if i < imax, and ci_.. = 10- 6, is used to determine convergence of a

subproblem.

Numerical experiments are carried out on three different test problems, with multiple

starting values, most of which are points of failure for both Newton's method and Gauss-

Newton. They conclude that, although the continuation method is less efficient than
the underlying method when both are successful, it will converge on many problems for

which the underlying method fails when used alone. However, the results they present

are for different values of the step size, and the exponent k, and no mechanism is given
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for the automatic choice of either of the parameters. DeVilliers and Glasser point out

that their methods may require modification if the optimization method that is used

to solve the subproblems encounters difficulties, or if the continuation path is not well-

behaved. Fraley [1987a, 1988] observes that the first two test problems of DeVilliers

and Glasser are very sensitive to the choice of the maximum step bound, or the initial

trust-region size for most methods and that the methods can be quite efficient provided

an appropriate non-default choice is made for these parameters.

Salane [1987] incorporates a trust-region strategy into a continuation method by

defining

1(x; r) (11f1x)112 + (r - 1)I~f(xo)I' + A~r - 1)IID(x - xo)II1) (8.3)

and then applying Gauss-Newton to this function for the inner iterations. Instead of

allowing the continuation parameter r to range from 0 to 1, he advocates stopping

when it becomes inefficient to solve the subproblems, and then restarting the method

after replacing x0 by the new iterate. He points out that his approach is especially

suitable for large-residual problems, because it transforms the original problem into a

sequence of subproblems with small residuals. The idea is to attempt to determine when

the neglected terms become significant, and then pose a new subproblem. An initial

value, rl, of the continuation parameter must be supplied by the user in order to start

the method. Should any step fail to obtain a decrease in either the nonlinear least-

squares objective or its gradient, -r, is decreased, and the calculation is repeated without

changing z0 . Theorems on descent conditions and convergence are presented. Salane

argues that his continuation method allows direct selection of the Levenberg-Marquardt

parameter A in (8.3), because \ may be chosen so that the term \(I - r)DTD behaves

somewhat like the second-order terms that have been neglected in the Hessian of 4'(x; r).

However, no mechanism is suggested for automatic choice of A, and A = Ilf(ZO)11 2 is

used in the tests.

Salane gives test results for a version of his algorithm on P set of nine problems

(all of which are included in our set). A comparison is made to results obtained from

MINPACK, and also to the results reported by DeVilliers and Glasser [1981] for two of

the test problems. He concludes that the performance of the method compares favorably

with that of MINPACK, and is superior to the DeVilliers and Glasser continuation method

on the relevant problems. The matrix D in (8.3) is taken to be the identity matrix

throughout the tests, and for one test problem a type of variable scaling is used. No

33

• , ,Ln m mna nmm nlm lm•n~ lnn
)

I mm



information is given concerning scaling for the MINPACK tests. The results that are

presented correspond to several different values of r1 , although the criterion used in

choosing this value is not given. Test results in which the value of r, is varied are included

for three of the problems for the purpose of showing that performance is sensitive to the

specification of the continuation parameter.

9. Modifications of Unconstrained Optimization Methods

Besides Gauss-Newton methods, several straightforward modifications of uncon-

strained optimization methods are possible for nonlinear least squares. In quasi-Newton

methods, JfTJO can be used as the initial approximation to the Hessian matrix. Ramsin

and Wedin [19771 report favorable results with this technique. We note that a perturbed

matrix JTJo can be used as the initial approximate Hessian, where J0 is a modified

Cholesky factor of JTJo (Gill and Murray (1974]) , in order to maintain positive defi-

niteness when J0 is ill-conditioned.

Wedin [19741 (see also Ramsin and Wedin [19771) suggests a modification of New-

ton's method in which the search direction is defined by

'n

(jT j + ,V2,)p = g(9.1)

where 4i is the ith component of the projection I of f onto 1Z(J). This iteration

approaches Newton's method in the limit, since f(x*) = f(x*), and is parameter-

independent, in the sense that minimization of f as a function of x is equivalent to

minimization of f as a function of a new variable z - provided the mapping that

defines x as a function of z has a nonsingular Jacobian. An obvious difficulty is that f,
and hence (9.1), is not well-defined when J is ill-conditioned.

Recall that in quasi-Newton methods for unconstrained optimization, the approxi-

mate Hesian matrix is required to satisfy the condition

Hk sk = Yk, (9.2)

where
8 k - Zk+ -Xk and k E gk+l - gk

(e. g. Dennis and Mori [1977]). AI-Baali and Fletcher [19851 suggest the use of VA:

defined by (5.12) rather than yk = gk+l - g in the quasi-Newton condition (9.2).
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They report improvements with the BFGS and DFP formulas when this substitution

is made. However, they remark that the condition V k-Sk > 0 for hereditary positive

definiteness of the updates is not guaranteed by the linesearch requirements, and they

replace §Sk in the update formulas by max {TASk,O.Olksk} as a safeguard. They do
not consider this a major drawback, because VTs > O.O1pyak almost always occurred

in their examples. A somewhat different safeguard is used in a later related paer [see

Fletcher and Xu (1986), p. 261 discussed below.

AI-Baali and Fletcher [1985] also develop several hybrid linesearch methods in which

the models are assessed in terms of the function Ak defined by (5.13), an approximate

measure of the error in the inverse Hessian. In one class of methods, the modified BFGS

update described in the preceding paragraph is applied to a matrix of the form

H+= (1 - k)Hk + ek +1kJ4+4+11

where T"A minimizes Ak(TkJ+,JA+,;Yk), and #A is chosen to minimize Ak(Hk+1;9k),

in order to obtain the new approximate Hessian. In their implementation, in which Ok

is restricted to be either 0 or 1, they find that the method has difficulties on singular

problems, and that the scaling of the search direction often does not allow Ot = I as a

trial step in the linesearch. They refer to AI-Baali 11984) for more details of the tests.

Another class of hybrid methods defined by AI-Baali and Fletcher compares the

value

AQN _ k(Hk; k)

for the current quasi-Newton approximation Hk with

A." Ap(Jljk+l; Vk)

for the Gauss-Newton approximation. The basic algorithm can be summarized as follows

if AQ,, <AGN then use the modified BFGS search direction

else use the Gauss-Newton search direction (9.3)

They test several versions of this method that differ in the action taken whenever a

switch from Gauss-Newton to quasi-Newton takes place. In one, Hk+1 is reset toiTj
Jk+i.k+l, while in another Hk+1 is reset to the result of applying the modified BFGS

ua Jk+l (conjugate-gradient acceleration). They observe little difference in

performance between these two alternatives, and find them to be the best of the many
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methods for nonlinear least squares treated in their study. A version of the first strategy

that substitutes the quantity Min, Ak("TJkJ+t; Vk) for AoN in the comparison with

AQN is also tried, but it is found to have some difficulties on a problem for which the

Jacobian is singular at the solution. A final variant maintains the quasi-Newton update

throughout, and never resets the approximate Hessian. They find that this method is

not as efficient as the others on some types of large-residual problem.

Fletcher and Xu [1986] give an example in which the hybrid method (9.3) has a

linear rate of convergence when the BFGS method would converge superlinearly. The

difficulty is that the comparison between AQN and A,,N may fail to distinguish between

zero-residual problems and those with nonzero residuals. They propose two new hybrid

algorithms and show them to be superlinearly convergent. The first algorithm computes

the modified BFGS search direction if

Ilf(xk)1 2 - lf(xk+1)112 < or, (9.4)
llf(X)112

for some fixed a E (0, 1), and a Gauss-Newton step otherwise. The method is motivated

by the following relationship

lim llf(Xk)ll2 - -If(Xk+I)ll2 0, if IIf(x*)1l2 $ 0;
k-oo llf(xk)112 - 1, if IIf(x*)112 = 0.

The second algorithm computes a modified BFGS step if

I1f(xk) - f(xk+1)112 < a d (JT@IJk..; Vk) > and(9.5)
Ilf (Xk)112 < rad Ak(JT'Jk; Vk) -

where both o and - are fixed parameters in (0, 1), and a Gauss-Newton step otherwise.

The additional condition for choosing the BFGS search direction is derived from another

asymptotic relationship

Ak(k+IJi +l;gk) - 0, if I1f(x*)I? = 0;
ko (JTJk; Vk) I, if I1f(z*)1IA2 # 0.

Numerical results are given for a set of fifty-six test problems, a few with multiple starting

values. They conclude that the new methods offer some overall improvement over those

based on (9.3), but that there is no reason to prefer the more complicated test (9.5)

over (9.4).

10. Special Linesearch Procedures
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Lindstrom and Wedin (19841 and AI-Baali and Fletcher [19861 propose specialized

linesearch methods for nonlinear least-squares problems in which each residual is inter-

polated by a quadratic function, in contrast to the strategy of interpolating to the sum

of squares used in conventional linesearches for unconstrained minimization. As a result

a quartic polynomial, rather than a simpler cubic or quadratic, is minimized at each

iteration of the linesearch.

Lindstr~n and Wedin substitute their linesearch, which uses only function values,

for the quadratic interpolation and cubic interpolation routines in the NAG Library

(1980 version) nonlinear least-squares algorithm EO4GBF (see Sections 4 and 5), and

compare the performance with the NAG linesearch routines on a set of eighteen test

problems. They find that no linesearch algorithm is superior over all, but that their

algorithm makes a better initial prediction to the steplength that minimizes the sum of

squares along the search direction. In a second set of tests that includes multiple starting

values for many of the test problems, they add a modified version of their linesearch

algorithm that reverts to a simple backtracking strategy if an acceptable decrease in the

sum of squares is not obtained after two function evaluations. They observe that their

modified method requires fewer function evaluations than either of the NAG linesearch

routines, and that the total for their original method falls between cubic interpolation

and quadratic interpolation to the sum of squares. They note occasional inefficiencies in

their methods due to extrapolation, but comment that such effects are more pronounced

for quadratic interpolation of the sum of squares.

AI-Baali and Fletcher [19861 test similar linesearch methods that use gradients on

a set of fifty-five test problems with a number of nonlinear least-squares algorithms

described in AI-Baali [19841 (see also AI-Baali and Fletcher [19851). They conclude that

considerable overall savings can be made by interpolating to each of the residuals rather
to than the sum of squares. They also obtain favorable results for two different schemes

designed to save Jacobian evaluations in the new linesearch.

11. Methods for Special Problem Classes

Algorithms have also been formulated to treat some special cases of the nonlinear

least-squares problem. For example, there is a vast literature concerning methods specific

to nonlinear equations that we shall make no attempt to survey here.
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In some nonlinear least-squares problems, the vector x can be separated into two

sets of variables, say

where it is relatively easy to minimize the sum of squares as a function of y alone. A

fairly common situation of this type is one in which y is the set of variables that occur

linearly in all of the residuals, so that

is a linear least-squares problem. For example, exponential fitting problems (see Varah

[19851) fall into this category. Methods that deal with separable nonlinear least-squares

problems were introduced by Golub and Pereyra [19731. Ruhe and Wedin [1980 survey

these methods and give some extensions. They describe three basic algorithms, all

of which use Gauss-Newton to minimize the sum of squares as a function of y. The

methods differ in the definition of the quadratic model function for minimization with

respect to z. The Jacobian and Hessian of the nonlinear least-squares objective can be

partitioned as follows:

J=(J, J.)

SV2  T G= I, GV )

.j JTj+ p V JTJ 3  + (BY BZ 1)=~ ~~ JTJ B=\jT jV jT j. BV B..

so that

V~(Y) = .Tf,

and

$ v~5i(Y) =G.-G T G;G, 1

=(JTj. + B..) - (JTJ, + BZP)T(JJ + B1,)-(JTJ + L 1 ).

The approximate Hessians that are considered for the minimizaion as a function of z

are
jT j. _T jTj -'G ,J,) .-. (11.1)

J~j T - JYJ,(JJY)-1 'J, (11.2)
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and

(11.3)

Algorithms based on (11.1) and (11.2) are shown to converge at a faster rate than the

conventional Gauss-Newton method, while the asymptotic convergence rate for (11.3)

may be much slower. On the other hand, of the three quadratic models, it is least

expensive to compute solutions with the approximate Hessian (11.3), and most expensive

to compute them from (11.1). Use of (11.2) costs about the same as a conventional

Gauss-Newton method. Tests on four sample problems are given to illustrate rates of

convergence.

Davidon [1976] introduces a quasi-Newton method for problems in which (i) m>

n, (ii) location of the minimum is not very sensitive to weighting of the residuals, and

(iii) rapid approach to a minimum is more important than convergence to it. A new

estimate of the minimum is computed after each individual residual and its gradient are

evaluated, rather than after evaluating the entire block of m residuals. Davidon gives

an analogy to time-dependent measurements of experimental data, in which quantities

calculated from the measurements are updated each time a new observation is made.

Starting from an initial quadratic approximation

qo(x) = f(Xo)Tf(Xo) + (X _ Xo)TH-I(X - XO),

with Ho positive-definite, the algorithm that determines the next iterate is equivalent

to minimizing a quadratic function of the form

qk+,(x) = [j(xk) + (X - Xk)TVoj(Xk)]2 + Akqk(x),

where Ak is in (0, 1!. It is suggested that the choice of {Ak} should be problem-

dependent, and some alternatives are proposed. Davidon tests the method on a set

of four problems in which he varies the size of the problem, the initial estimate of the

solution, and the sequence {4}. He observes that the method tends to oscillate about

a minimum rather than converging to it, but that it often redu :es the sum of squares

more rapidly than other methods.

Further computational experiments with Davidon's method are reported in Cornwell,

Kocman, and Prosser [19801. On a set of fifteen zero-residual problems, they test the

method with various fixed values of Ak. They obtain overflow in most cases for small

values, but otherwise find that the efficiency of the method decreases as A, is increased.
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In one case, the method cycled through a sequence of points that was not near-optimal.

On the basis of these observations, they implement a new version that attempts to use

a fixed, relatively small value of 1k, restarting from the initial vector with a larger value

if it is determined that overflow would otherwise occur. They find that this modified

implementation of Davidon's method is competitive with the computer program LNCHOL

from Argonne National Laboratory based on Fletcher's [19711 Levenberg-Marquardt

algorithm (which has since been superseded by the MINPACK routine LJ4DER [Mori,

Garbow, and Hillstrom (1980)1).
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